
Facio Documentation
Release 1.1.1

Christopher Reeves

August 02, 2013

CONTENTS

i

ii

Facio Documentation, Release 1.1.1

Facio: /fa.ki.o/ - Latin, meaning to make, do, act, perform, cause, bring about.

CONTENTS 1

Facio Documentation, Release 1.1.1

2 CONTENTS

CHAPTER

ONE

WHAT IS IT?

If you work on quick turn around projects either at work or in your free time you might end up doing a lot of boiler
plate cruft for your projects over and over, creating the same basic template. You might copy and paste this around, it
might fall out of date, you might make improvements in a project but forget about them for the next.

Facio gives you the ability to create a standard template (or templates) for your projects so you can bootstrap in one
single command.

Originally developed with Django in mind you can use Facio for any type of project.

3

https://www.djangoproject.com/

Facio Documentation, Release 1.1.1

4 Chapter 1. What is it?

CHAPTER

TWO

STATUS

Current Version: 1.1.1

Tests are run using Travis CI.

• Master Branch (Stable):

• Develop Branch (Active Development):

5

https://travis-ci.org/krak3n/Facio

Facio Documentation, Release 1.1.1

6 Chapter 2. Status

CHAPTER

THREE

FEATURES

• Custom Templates

• Git support for remote templates

• Multiple templates

• Jinja2 Templates

• Python virtualenv creation

• Configuration using .facio.cfg

7

http://jinja.pocoo.org/docs/

Facio Documentation, Release 1.1.1

8 Chapter 3. Features

CHAPTER

FOUR

TOPICS

4.1 Installing

Facio can be installed on system using the standard python package installers pip and easy_install.

Note: sudo is used in the following commands for system wide installation.

4.1.1 Easy Install

sudo easy_install facio

4.1.2 Pip

sudo pip install facio

4.1.3 Manual

cd /where/you/want/it/to/live
git clone git@github.com:krak3n/facio.git
cd facio
sudo python setup.py install

4.1.4 Verify Install

Once you have installed Facio using one of the above methods you can very the install by checking that the facio
script was installed by running:

which facio
> /usr/local/bin/facio

If all went well facio is now available from your command line.

4.2 Usage

Facio is designed to be flexible to how you bootstrap your projects, heres how to use it.

9

Facio Documentation, Release 1.1.1

4.2.1 Out of the box

Facio used via the command line, after installation you should have a facio command available. Use help to see the
options available.

$ facio -h

To create a new project its simple, cd into the directory you want your new project to live, facio will create the
directory for you so you don’t need to make it, for example:

$ cd /home/me/projects
$ facio -n hello_world

This will create a new hello_world directory at /home/me/projects and inside the default facio template
will have been processed and placed there.

4.2.2 Advanced Usage

Facio is designed to be flexible, with a combination of command line options and a configuration file.

Command Line

--version show program’s version number and exit

-h, --help show this help message and exit

Project Options

-n <ARG>, --name=<ARG> The Project Name (Mandatory), only use alphanumeric characters and
underscores.

Template Options

-t <ARG1>, --template=<ARG1> Path to your custom template, absolute paths only, git
repositories can also be specified by prefixing with git+ for example:
git+git@gitbub.com/path/to/repo.git

-c, --choose_template If you have more than 1 template defined use this flag to override the default
template, Note: specifying -t (–template) will mean this flag is ignored.

-s <ARG>, --template_settings_dir=<ARG> Template settings directory name

--vars=<ARG> Custom variables, e.g –vars hello=world,sky=blue

Experimental Options

-i, --install Install the project onto your path, e.g python setup.py develop

-e, --venv_create Create python virtual environment

-p <ARG>, --venv_path=<ARG> Python virtualenv home directory

-S, --venv_use_site_packages Create python vittual environment without –no-site-packages

-x <ARG>, --venv_prefix=<ARG> Virtual environment name prefix

10 Chapter 4. Topics

mailto:git+git@gitbub.com/path/to/repo.git

Facio Documentation, Release 1.1.1

Configuration File

Most things you can specify as command line options are also configurable in a facio.cfg file, this should live in
your home directory and be prefixed with a ., for example /home/you/.facio.cfg.

Example ~/.facio.cfg

The ~/.facio.cfg file uses ini style formatting.

[template]
The Default Template to user (can be a git repp, prefix with git+url_to_repo
default=/home/me/my_custom_template/
Add other templates here, for example:
experimental_template: /my/new/template/
flask: git+git@github.com/my_flask_template.git

[misc]
install=0 # Experimental

Experimental
[virutalenv]
venv_create=1
venv_path=/home/me/.virtualenvs/

Above is an example ~/.facio.cfg file and contains a [misc], [virtualenv], and [template] sections.
These sections and their allowed options allow you set defaults so when you run facio form the command line you
need to keep specifying things like template path and virtual environment creation.

Available Options

• [template]

– default: Path to your custom template, prefix with git+ to define git repository path.

– other_template: Path to other template

• [misc]

– install: 0 or 1 - Run setup.py to install project onto python path using setup.py develop

• [virtualenv]

– venv_create: 0 or 1 - Create python virtual environment

– venv_path: Path to python virtual environments home, e.g /home/me/.virtualenvs/

4.3 Project Templates

Project templates are simple the bare bones of your project with key parts where you would put things like the project
name replaced wit Jinja2 template syntax.

These templates can live locally on your file system or they can live on a remote git repository. See Usage for more
on this.

4.3. Project Templates 11

Facio Documentation, Release 1.1.1

4.3.1 Basic Example

This is a basic HTML project template:

<html>
<head>

<title>{{ PROJECT_NAME }}</title>
</head>
<body>

<h1>Hello world, I am {{ PROJECT_NAEME }}</h1>
</body>

</html>

In the above example {{ PROJECT_NAME }} will be replaced with what ever you set the project name to be in the
command, so for example: $ facio -n foo would result in {{ PROJECT_NAME }} being replaced by foo.

Your project can be made up of any file types, any directory structure, it all gets copied over and processed.

4.3.2 Custom Variables

Of course project name is not always enough and in these situations you can send extra variables to facio to use in
the template processing. To do this run facio with the --vars flag passing a comma separated list, for example:

facio -n hello_world --vars foo=bar,something=else

Templates

Accessing these variables in templates is easy:

Hello World
foo={{ foo }}
something={{ something }}

As Jinja2 is used to render the templates, you can use conditions, and other Jinja2 functionality, for example:

{% if foo==’bar’ %}
Foo is bar
{% else %}
Foo is not bar
{% endif %}

See the Jinja2 Documentation.

Renaming Files / Directories

You can even rename a directory and/or file by using double underscores around the variable name, for example:

- /path/to/template/
- __foo__/
- another.txt

- __foo__.txt
- some_file.txt
- some_other_file.txt

12 Chapter 4. Topics

http://jinja.pocoo.org/docs/

Facio Documentation, Release 1.1.1

- /path/to/template/
- bar/
- another.txt

- bar.txt
- some_file.txt
- some_other_file.txt

4.4 Developing / Contributing

Fancy helping out? Fork, commit, issue pull request :) Also please write some tests to prove your new bit of code
works.

This project uses git flow, if you are not familiar please see Git Flow. Under Git Flow master is the most stable branch,
develop is where active development occurs so please contribute using the develop branch.

4.4.1 Vagrant

I use Vagrant for my personal development so I have bundled it with the repository. There are a few dependencies to
how I have it setup.

• Vagrant 1.1+

• VirtualBox (what ever the latest is)

• Vagrant Guest Additions Plugin: vagrant plugin install vagrant-vbguest

• Vagrant Salt Provisioner: vagrant plugin install vagrant-salt

Once you have all the dependencies installed it should be a simple case of running vagrant up at the root of
the repository. Once it’s finished you should have a development environment with all of the facio dependencies
installed into python virtual environment. All you have to do is python setup.py develop.

4.5 Change Log

4.5.1 Version 1.1 - 5/4/2013

• Improved output to the user

• Decoupled SCM into separate classes so its easier to add new ones in the future

• Updated bundled template

• Documentation

4.5.2 Version 1.0.1 (hotfix) - 6/12/2012

• Fixed issue where bundled default template was not provided in distribution.

4.5.3 Version 1.0 - 5/12/2012

• Decoupled Git cloning from Template Class into a separate class, laying the foundation for future SCM support.

• Created a bundled default template.

4.4. Developing / Contributing 13

https://github.com/nvie/gitflow
http://www.vagrantup.com/

Facio Documentation, Release 1.1.1

4.5.4 Version 1.0 Beta 1 - 26/11/2012

• Initial Release

14 Chapter 4. Topics

CHAPTER

FIVE

LICENSE

See LICENSE file in the Git Repository.

15

https://github.com/krak3n/facio

Facio Documentation, Release 1.1.1

16 Chapter 5. License

CHAPTER

SIX

AUTHORS

See LICENSE file in the Git Repository.

17

https://github.com/krak3n/facio

Facio Documentation, Release 1.1.1

18 Chapter 6. Authors

CHAPTER

SEVEN

SPECIAL THANKS

To the Tech Team at Poke London and the awesome Jinja2.

And thanks to Jack for helping me name it (and pointing out grammatical errors). <3.

19

http://pokelondon.com
http://jinja.pocoo.org/docs/

Facio Documentation, Release 1.1.1

20 Chapter 7. Special Thanks

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

21

